Part Number Hot Search : 
AD771 T820900A BAW56 KDZ36V MCH3376 BU941ZFI GP1S44S1 KDZ36V
Product Description
Full Text Search
 

To Download STA323W13TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 STA323W
2.1 high efficiency digital audio system
Features

Input and output channel mapping AM noise reduction and PWM frequency shifting modes Soft volume update and muting Auto zero detect and invalid input detect muting selectable DDX(R) ternary or binary PWM output + variable PWM speeds Selectable de-emphasis Post-EQ user programmable mix with default 2.1 bass management settings Variable max power correction for lower fullpower THD 4 output routing configurations Selectable clock input ratio 96 kHz internal processing sample rate, 24 to 28-bit precision - Video application: 576 fs input mode supporting
Wide supply voltage range (10-36 V) 3 x power output configurations - 2 x 10 W + 1x 20 W - 2 x 20 W - 1 x 40 W Thermal protection Under voltage protection Short circuit protection Power SO-36 Slug Down package 2.1 channels of 24-bit DDX(R) 100 dB SNR and dynamic range 32 kHz to 192 kHz input sample rates Digital gain/attenuation +48 dB to -80 dB in 0.5 dB steps 4 x 28-bit user programmable biquads (EQ) per channel I2C control 2-channel I2S input data interface Individual channel and master gain/attenuation Individual channel and master soft and hard mute Individual channel volume and EQ bypass DDX(R) POP free operation Bass/treble tone control Dual independent programmable limiters/compressors AutomodesTM - 32 preset EQ curves - 15 preset crossover settings - Auto volume controlled loudness - 3 preset volume curves - 2 preset anti-clipping modes - Preset nighttime listening mode - Preset TV AGC


Order codes
Part number STA323W STA323W13TR Package PowerSO36 (Slug Down) PowerSO36 in tape & reel
December 2006
Rev 5
1/71
www.st.com 1
Contents
STA323W
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 1.2 Block diagram and configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 EQ processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 3
Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Power supply and control sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Output power against supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.1 4.1.2 4.1.3 Audio performance (operation with Vcc = 26 V, 8 Ohm load, stereo mode) 19 Audio performance - stereo mode (operation with Vcc = 18.5 V) . . . . . 20 Audio performance - half bridge binary mode (operation with Vcc = 18.5 V) 24
5 6
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 STA323W I2C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.1 6.1.2 6.1.3 6.1.4 Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 6.3
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3.1 6.3.2 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4
Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4.1 6.4.2 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.5 6.6
Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2/71
STA323W
Contents
7
Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1 Configuration register A (address 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 7.3 7.4
Configuration register B (address 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2.1 Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3.1 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Configuration register C (address 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4.1 7.4.2 DDX(R) power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DDX(R) variable compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . 40
7.5
Configuration register D (address 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7 High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . 42 Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.6
Configuration register E (address 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.6.1 7.6.2 7.6.3 7.6.4 7.6.5 7.6.6 Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.7 7.8
Configuration register F (address 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.7.1 Output configuration selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Volume control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.8.1 7.8.2 7.8.3 Master controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Channel controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Volume description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.9
Automode registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3/71
Contents 7.9.1 7.9.2
STA323W . . . . . . . . . . . . Register - automodes EQ, volume, GC (address 0x0B) 48 Register - preset EQ settings (address 0x0D) . . . . . . . . . . . . . . . . . . . . 51
7.10
Channel configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.10.1 7.10.2 7.10.3 Channel 1 configuration (address 0x0E) . . . . . . . . . . . . . . . . . . . . . . . . 52 Channel 2 configuration (address 0x0F) . . . . . . . . . . . . . . . . . . . . . . . . 52 Channel 3 configuration (address 0x10) . . . . . . . . . . . . . . . . . . . . . . . . 52
7.11 7.12
Tone control (address 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Dynamics control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.12.1 7.12.2 7.12.3 7.12.4 7.12.5 7.12.6 7.12.7 Limiter 1 attack/release threshold (address 0x12) . . . . . . . . . . . . . . . . . 54 Limiter 1 attack/release threshold (address 0x13) . . . . . . . . . . . . . . . . . 54 Limiter 2 attack/release rate (address 0x14) . . . . . . . . . . . . . . . . . . . . . 54 Limiter 2 attack/release threshold (address 0x15) . . . . . . . . . . . . . . . . . 54 Dynamics control description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Anti-clipping mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Dynamic range compression mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8
User-programmable settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.1 8.2 8.3 8.4 8.5 8.6 EQ - biquad equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Pre-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Mix/bass management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Calculating 24-bit signed fractional numbers from a dB value . . . . . . . . . 61 User defined coefficient RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.6.1 8.6.2 8.6.3 8.6.4 8.6.5 8.6.6 8.6.7 8.6.8 8.6.9 8.6.10 8.6.11 8.6.12 8.6.13 Coefficient address register 1 (address 0x16) . . . . . . . . . . . . . . . . . . . . 61 Coefficient b1data register bits 23...16 (address 0x17) . . . . . . . . . . . . . 61 Coefficient b1data register bits 15...8 (address 0x18) . . . . . . . . . . . . . . 61 Coefficient b1data register bits 7...0 (address 0x19) . . . . . . . . . . . . . . . 61 Coefficient b2 data register bits 23...16 (address 0x1A) . . . . . . . . . . . . 62 Coefficient b2 data register bits 15...8 (address 0x1B) . . . . . . . . . . . . . 62 Coefficient b2 data register bits 7...0 (address 0x1C) . . . . . . . . . . . . . . 62 Coefficient a1 data register bits 23...16 (address 0x1D) . . . . . . . . . . . . 62 Coefficient a1 data register bits 15...8 (address 0x1E) . . . . . . . . . . . . . 62 Coefficient a1 data register bits 7...0 (address 0x1F) . . . . . . . . . . . . . . 62 Coefficient a2 data register bits 23...16 (address 0x20) . . . . . . . . . . . . 63 Coefficient a2 data register bits 15...8 (address 0x21) . . . . . . . . . . . . . 63 Coefficient a2 data register bits 7...0 (address 0x22) . . . . . . . . . . . . . . 63
4/71
STA323W 8.6.14 8.6.15 8.6.16 8.6.17
Contents Coefficient b0 data register bits 23...16 (address 0x23) . . . . . . . . . . . . 63 Coefficient b0 data register bits 15...8 (address 0x24) . . . . . . . . . . . . . 63 Coefficient b0 data register bits 7...0 (address 0x25) . . . . . . . . . . . . . . 63 Coefficient write control register (address 0x26) . . . . . . . . . . . . . . . . . . 64
8.7 8.8 8.9 8.10 8.11 8.12 8.13
Reading a coefficient from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Reading a set of coefficients from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Writing a single coefficient to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Writing a set of coefficients to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Variable max power correction (address 0x27-0x28) . . . . . . . . . . . . . . . . 67 Fault detect recovery (address 0x2B - 0x2C) . . . . . . . . . . . . . . . . . . . . . . 67 Status indicator register (address 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.13.1 8.13.2 8.13.3 Thermal warning indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Fault detect indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PLL unlock indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5/71
Description
STA323W
1
Description
The STA323W is a single-chip audio system comprising digital audio processing, digital amplifier control and a DDX-power output stage. The STA323W uses all-digital amplification to provide high-power, high-quality and high-efficiency. The STA323W power section consists of four independent half-bridges. These can be configured, by digital control, to operate in the following modes.

Two channels, provided by two half-bridges, and a single full-bridge giving up to 2 x 10 W + 1 x 20 W of power output. Two channels, provided by two full-bridges, giving up to 2 x 20 W of power. A single, parallel, full-bridge channel capable of high-current operation and giving 1 x 40W output.
The STA323W also provides a full set of digital processing features. These includes up to four programmable 28-bit biquads (EQ) per channel, and bass and treble tone control. AutomodesTM enable a time-to-market advantage by substantially reducing the amount of software development needed for specific functions. These includes auto volume loudness, preset volume curves and preset EQ settings. New advanced AM radio interference reduction modes are also provided. The serial audio data input interface accepts all existing formats, including the I2S. Three channels of DDX(R) processing are provided. This high quality conversion from PCM audio to DDX's patented tri-state PWM switching waveform provides over 100 dB SNR and dynamic range.
1.1
Figure 1.
Block diagram and configurations
Block diagram
SDA I2C System control OUT1A DDX processing Quad half-bridge power stage OUT1B OUT2A OUT2B SCL
LRCKI BICKI SDI_12
Serial data input, channel mapping and resampling
Audio EQ, mix, crossover, volume, limiter processing
System timing Power down
TWARN
FAULT
EAPD
Power down
CLK
6/71
STA323W Figure 2.
I2S input
Description Channel signal flow diagram through the digital core
DDX output
Channel mapping
Re-sampling
ED processing
Mix
Crossover filter
Volume limiter
4x Interp
DDX
1.2
EQ processing
Two channels of input data (re-sampled if necessary) at 96 kHz are provided to the EQ processing block. In these blocks, up to four user-defined Biquads can be applied to each of the two channels. Pre-scaling, DC-blocking high-pass, de-emphasis, bass, and tone control filters can also be implemented by means of configuration parameter settings. The entire EQ block can be bypassed for all channels simultaneously by setting the DSPB bit to '1'. The CxEQBP bits can also be used to bypass the EQ functionality on a per channel basis. Figure 3 shows the internal signal flow through the EQ block.
Figure 3.
Re-sampled input
Channel signal flow diagram through the EQ block
pre-scale High pass filter BQ#1 BQ#2 BQ#3 BQ#4 Deemphasis Bass filter Treble filter To mix
If HPB= 0
4 biquads User defined if AMEQ = 00 Perset EQ if AMEQ = 01 Auto loudness if AMEQ = 10
If DEMP = 1
If CxTCB = 0 BTC: bass boost/cut TTC: treble boost/cut
If DSPB = 0 and CxEQB = 0
7/71
Description Figure 4. 2-channel (full-bridge) power, OCFG(1...0) = 00
Half bridge Half bridge Half bridge Half bridge OUT1A Channel 1 OUT1B OUT2A Channel 2 OUT2B
STA323W
Figure 5.
2.1 -channel power configuration, OCFG(1...0) = 01
Half bridge Half bridge Half bridge Half bridge
OUT1A
Channel 1 Channel 2
OUT1B OUT2A
Channel 3 OUT2B
Figure 6.
1-channel mono-parallel configuration, OCFG(1...0) = 11
Half bridge Half bridge Half bridge Half bridge OUT1A
OUT1B OUT2A
Channel 3
OUT2B
8/71
STA323W
Schematics
2
Schematics
Table 1. Component selection "Table A" - full-bridge operation
Load 4 6 8 Inductor 10 H 15 H 22 H Capacitor 1.0 F 470 nF 470 nF
Table 2.
Component selection "Table B" - binary half-bridge operation
Load 4 6 8 Inductor 22 H 33 H 47 H Capacitor 680 nF 470 nF 390 nF
Table 3.
Component selection "Table C" - mono operation
Load 2 3 4 Inductor 4.7 H 6.8 H 10 H Capacitor 2.0 F 1.0 F 1.0 F
9/71
Schematics Figure 7. Schematic for 2 (half-bridge) channels + 1 (full-bridge)-channel on-board
STA323W
Figure 8.
Power schematic for 2 (full-bridge)-channel on-board power
10/71
STA323W Figure 9. Power schematic for 1 mono parallel channel
Schematics
Figure 10. Pin layout (viewed from top of device)
N.C. N.C. OUT2B VCC2B N.C. GND2B GND2A VCC2A OUT2A OUT1B VCC1B GND1B GND1A N.C. VCC1A OUT1A GNDCLEAN GNDREG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 VCC SIGN VSS VDD GND BICKI LRCKI SDI VDDA GNDA XTI PLL FILTER RES SDA SCL RESET CONFIG VL VDD REG
Table 4.
Pin 1 2 3 4 5 6
Pin description
Type N.C. N.C. O I/O N.C. I/O GND2B OUT2B VCC2B Name Description Not connected Not connected Output half bridge 2B Positive supply Not connected Negative supply
11/71
Schematics Table 4.
Pin 7 8 9 10 11 12 13 14 15 16 17 18 19
20
STA323W Pin description (continued)
Type I/O I/O O O I/O I/O I/O. N.C. I/O O I/O I/O I/O I/O 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 I I I I/O RES I I I/O I/O I I/O I I/O I/O I/O I/O VCC1A OUT1A GNDCLEAN GNDREG VDD DIGITAL VL CONFIG RESET SCL SDA Reserved PLL FILTER XTI Analog ground Analog supply SDI_12 LRCKI BICKI Digital ground Digital supply VSS digital VCC digital Name GND2A VCC2A OUT2A OUT1B VCC1B GND1B GND1A Description Negative supply Positive supply Output half bridge 2A Output half bridge 1B Positive supply Negative supply Negative supply Not connected Positive supply Output half bridge 1A Reference ground Substrate ground Logic supply Logic supply to power section Logic levels Reset IC serial clock IC serial data Test pin to be externally connected to ground Connection to PLL filter PLL input clock Analog ground Analog supply 3.3 IS serial data channels 1 and 2 IS left/right clock, IS serial clock Digital ground Digital supply 3.3 V 5 V regulator referred to +Vcc 5 V regulator referred to ground (signal positive supply)
12/71
STA323W Table 5.
Symbol VDD_3.3 Vi Vo Tstg Tamb VCC VMAX
Schematics Absolute maximum ratings
Parameter 3.3 V I/O power supply Voltage on input pins Voltage on output pins Storage temperature Ambient operating temperature DC supply voltage Maximum voltage on pins 20 Value -0.5 to 4 -0.5 to (VDD+0.5) -0.5 to (VDD+0.5) -40 to +150 -40 to +85 40 5.5 Unit V V V C C V V
Table 6.
Symbol Rthj-case Tj-SD TWARN Th-SD
Thermal data
Parameter Thermal resistance junction to case (thermal pad) Thermal shut-down junction temperature Thermal warning temperature Thermal shut-down hysteresis 150 130 25 Min Typ Max 2.5 Unit C/W C C C
Table 7.
Symbol VDD_3.3 Tj
Recommended DC operating conditions
Parameter I/O power supply Operating junction temperature Value 3.0 to 3.6 -40 to +125 V C Unit
13/71
Electrical characteristics
STA323W
3
Note:
Electrical characteristics
VDD3 = 3.3V 0.3V; Tamb = 25C; unless otherwise specified. Table 8.
Symbol Iil Iih IOZ Vesd
General interface electrical characteristics
Parameter Low level input no pull-up High level input no pull-down Tristate output leakage without pull-up/down Electrostatic protection Test Condition Vi = 0V Vi = VDD3 Vi = VDD3 Leakage < 1A 2000 Min. Typ. Max. 1 2 2 Unit A A A V Note 1 1 1 2
Note:
1 2
The leakage currents are generally very small < 1na. The values given here are maximum after an electrostatic stress on the pin. Human body model. Table 9.
Symbol VIL VIH Vhyst Vol Voh
DC electrical characteristics: 3.3 V buffers
Parameter Low level Input voltage High level Input voltage Schmitt trigger hysteresis Low level output High level output IoI = 2mA Ioh = -2mA VDD -0.15 2.0 0.4 0.15 Test condition Min. Typ. 0.8 Max. Unit V V V V V
Table 10.
Symbol RdsON Idss gN gP Dt_s td ON td OFF tr tf
Power electrical characteristics (VL = 3.3 V; Vcc = 30 V; Tamb = 25 C unless otherwise specified)
Parameter Power Pchannel/Nchannel MOSFET RdsON Power Pchannel/Nchannel leakage Idss Power Pchannel RdsON matching Power Nchannel RdsON matching Low current dead time (static) Turn-on delay time Turn-off delay time Rise time Fall time Test conditions Id=1 A Vcc=35 V Id=1 A Id=1 A See test circuit no.1; see Figure 12 Resistive load Resistive load Resistive load Resistive load; as Figure 12 95 95 10 20 100 100 25 25 Min. Typ. 200 Max. 270 50 Unit m A % % ns ns ns ns ns
14/71
STA323W Table 10.
Symbol VCC VL VH IVCCPWRDN
Electrical characteristics Power electrical characteristics (VL = 3.3 V; Vcc = 30 V; Tamb = 25 C unless otherwise specified) (continued)
Parameter Supply voltage operating voltage Low logical state voltage VL High logical state voltage VH Supply current from Vcc in PWRDN Supply current from Vcc in Tri-state Supply current from Vcc in operation (both channel switching) Overcurrent protection threshold (short circuit current limit) Under voltage protection threshold Output minimum pulse width Output power (refer to test circuit Output power (refer to test circuit No Load THD = 10% RL = 8 ; VS = 18 V THD = 1% RL = 8 ; VS = 18 V 70 VL = 3.3 V VL = 3.3 V PWRDN = 0 Vcc=30 V; Tri-state Input pulse width = 50% Duty; Switching frequency = 384 Khz; No LC filters; 4 22 Test conditions Min. 8 0.8 1.7 3 Typ. Max. 36 Unit V V V mA mA
IVCC-hiz
IVCC
80
mA
Iout-sh
6
A
VUV tpw-min Po Po
7 150
V ns
20 16
W W
Table 11.
Symbol treset VCO
Timing characteristics
Parameter Reset hold time (pin 22) VCO free run frequency Test condition Active low rest 100 28 Min. Typ. Max. Unit nSec
No clock applied 18 to XTI
15/71
Electrical characteristics Figure 11. Test circuit
OUTY Vcc (3/4)Vcc Low current dead time = MAX(DTr,DTf) (1/2)Vcc (1/4)Vcc +Vcc t Duty cycle = 50%
M58
STA323W
DTr OUTY
M57
DTf
INY
R 8
+ -
V67 = vdc = Vcc/2
D02AU1448
gnd
3.1
Power supply and control sequencing
Figure 12 shows the recommended power-up and power-down sequencing. The "time zero" reference point is taken where VCC crosses the under voltage lockout threshold. Figure 12. Recommended power up and power down sequence
16/71
STA323W
Electrical characteristics curves
4
4.1
Electrical characteristics curves
Output power against supply voltage
Figure 13. Stereo mode - output power against supply voltage, THD+N = 10%
O u tp u t p o w e r (W ) 80 70 60 50 40 4ohm 6ohm 8ohm
30 20 10
10
12
14
16
18
20
22
24
26
P o w e r S u p p ly V o lta g e (V D C )
Figure 13 shows the full-scale output power (0dB FS digital input with unity amplifier gain) as a function of power supply voltage for 4, 6, and 8 loads in either DDX(R) mode or binary full bridge mode. Output power is constrained for higher impedance loads by the maximum voltage limit of the STA323W and by the over-current protection limit for lower impedance loads. The minimum threshold for the over-current protection circuit of the STA323W is 4 A (at 25 C) but the typical threshold is 6 A for the device. The solid curves shows the typical output power capability of the device. The dotted curves shows the output power capability constrained to the minimum current specification of the STA323W. The output power curves assume proper thermal management of the power device's internal dissipation. Figure 14. Output power vs. supply for stereo bridge (THD+N=1%)
o u tp u t p o w e r (W ) - B T L 1 % T H D 60 6 ohm 50 4 ohm
40 8 ohm 30 16ohm 20
10
0 10 15 20 25 30
s u p p ly v o lta g e (V )
17/71
Electrical characteristics curves
STA323W
Figure 14 shows the mono mode output power as a function of power supply voltages for loads of 2, 3, and Ohms. The same current limits as those given for Figure 13 apply, except output current is 8 A minimum, with 12 A typical in the mono-bridge configuration. The solid curves show typical performance and dashed curves depict the minimum current limit. The output power curves assume proper thermal management of the power device's internal dissipation. Figure 15. Half-bridge binary mode output power vs. supply (THD+N=10%). Curves taken at f = 1 kHz and using a 330F blocking capacitor
25 Output power (W )
20
15 6ohm 8ohm
4ohm 10
5
0
10
12
14
16
18
20
22
2
26
Power Supply Voltage (VDC)
Figure 15 shows the output power as a function of power supply voltages for loads of 4, 6, and 8 when the STA323W is operated in a half-bridge binary mode. The solid curves depict typical performance. Minimum current limit is not reached for these combinations of voltage and load impedance. The output power curves assume proper thermal management of the power device's internal dissipation.
18/71
STA323W
Electrical characteristics curves Figure 16. Half bridge binary mode output power vs. supply voltage (THD+N=1%). Curves taken at 1 kHz and using a 330F blocking capacitor
o u tp u t p o w e r (W ) 25 3 ohm
20
2 ohm
4 ohm 15 8 ohm 10
5
0 10 15 20 s u p p ly v o lta g e (V ) 25 30
4.1.1
Audio performance (operation with Vcc = 26 V, 8 Ohm load, stereo mode)
Figure 17. Typical efficiency
100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80
Total Output Power (Watts)
Figure 18. Typical frequency response
19/71
Electrical characteristics curves Figure 19. FFT -60 dB, 1 kHz output
STA323W
Figure 20. FFT inter-modulation distortion 19 kHz and 20 kHz
4.1.2
Audio performance - stereo mode (operation with Vcc = 18.5 V)
Figure 21. Frequency response: 1 W, BTL, 8 ohm
dBr A +3 + 2 .5 +2 + 1 .5 +1 + 0 .5 +0 6ohm -0 .5 4 ohm -1 -1 .5 -2 -2 .5 -3 20 50 100 200 500 Hz 1k 2k 5k 10k 20k 8ohm
20/71
STA323W
Electrical characteristics curves Figure 22. Channel separation 1 W, BTL stereo mode
dBr A +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 4ohm -9 0 -1 0 0 8ohm
20
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 23. THD vs. PWR BTL, 1 kHz
% 10 5
2 1 0 .5
8ohm
6ohm
0 .2 4ohm 0 .1 0 .0 5
0 .0 2 0 .0 1
100m
200m
500m
1
2 W
5
10
20
50
Figure 24. THD vs. freq. 1 W output, stereo mode
% 1
0 .5
0 .2
0 .1
0 .0 5
4ohm 6ohm 8ohm
0 .0 2
0 .0 1
20
50
100
200
500
Hz
1k
2k
5k
10k
20k
21/71
Electrical characteristics curves Figure 25. THD vs. freq. BTL 16 W output
1 %
STA323W
0 .5
0 .2
0 .1
8ohm
6ohm
0 .0 5
4ohm
0 .0 2
0 .0 1
20
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 26. FFT 0 dbfs 1 kHz, 1 kHz, 8
+40 +20 dB r
+0
-2 0
-4 0
-6 0
-8 0
-1 0 0 -1 2 0
-1 4 0
20
50
10 0
200
500 Hz
1k
2k
5k
10k
20k
Figure 27. FFT 0 dbfs 1 kHz, 1 kHz 4
dBr +40 +20
+0
-2 0 -4 0
-6 0
-8 0
-1 0 0
-1 2 0
-1 4 0
20
50
100
200
500 Hz
1k
2k
5k
10k
20k
22/71
STA323W Figure 28. FFT 0 dbfs 1 kHz, 1 kHz 4
dBr +40 +20
Electrical characteristics curves
+0
-2 0
-4 0
-6 0
-8 0
-1 0 0
-1 2 0
-1 4 0
20
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 29. FFT -60 dbfs 1 kHz, 8
dBr +40 +20 +0 -2 0 -4 0 -6 0 -8 0 -1 0 0 -1 2 0 -1 4 0 -1 6 0
20
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 30. FFT -60 dbfs 1 kHz, 6
dBr +40 +20 +0 -2 0 -4 0 -6 0 -8 0 -1 0 0 -1 2 0 -1 4 0 -1 6 0
20
50
100
200
500 Hz
1k
2k
5k
10k
20k
23/71
Electrical characteristics curves Figure 31. FFT -60 dbfs 1 kHz, 4
dB r +40 +20 +0 -2 0 -4 0 -6 0 -8 0 -1 0 0 -1 2 0 -1 4 0 -1 6 0
STA323W
20
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 32. PSRR BTL: 500 mV ripple
dBr +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 8 ohm -6 0 -7 0 -8 0 -9 0 -1 0 0 20 30 40 50 60 Hz 70 80 90 100 200 4 ohm 6ohm T T
4.1.3
Audio performance - half bridge binary mode (operation with Vcc = 18.5 V)
Figure 33. Frequency response: 1 W, binary half bridge mode
dBr A +3 + 2 .5 +2 + 1 .5 +1 + 0 .5 +0 -0 .5 -1 -1 .5 4ohm -2 -2 .5 2ohm -3 20 50 100 200 500 1k 2k 5k 10k 20k F re q u e n c y (H z ) 3ohm
24/71
STA323W
Electrical characteristics curves Figure 34. Channel separation 1 W, half bridge binary
dBr A +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 8ohm -6 0 4 ohm -7 0 -8 0 -9 0 -1 0 0 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
Figure 35. THD+N vs. PWR SE, 1 kHz input frequency, half bridge binary
% 10 5 2 ohm 4ohm 1 0 .5 3 ohm
2
0 .2 0 .1 0 .0 5
0 .0 2 0 .0 1 100m 200m 500m 1 2 W 5 10 20 50
Figure 36. THD+N vs. PWR SE, 1 kHz input frequency, half bridge binary
% 10 5 2 ohm 4ohm 1 0 .5 3 ohm
2
0 .2 0 .1 0 .0 5
0 .0 2 0 .0 1 100m 200m 500m 1 2 W 5 10 20 50
25/71
Electrical characteristics curves Figure 37. THD against freq SE 1 W
% 0 .5 0 .4 0 .3 0 .2 2ohm 3ohm 0 .1 0 .0 8 0 .0 6 0 .0 5 0 .0 4 0 .0 3 0 .0 2 4ohm
STA323W
0 .0 1
20
50
100
200
500 Hz
1k
2k
5k
10k
20k
Figure 38. THD against freq. SE 8 W, Single end
5 %
2
1 2ohm 3ohm 0 .2 4ohm
0 .5
0 .1
0 .0 5
0 .0 2
0 .0 1
20
50
10 0
200
500 Hz
1k
2k
5k
10k
20k
Figure 39. FFT 0 dB 1 kHz SE, 2
dBr +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 2 0 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
26/71
STA323W Figure 40. FFT 0 dB 1 kHz SE, 3
+10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 2 0 20 50 100 200 500 Hz 1k 2k 5k dBr
Electrical characteristics curves
10k
20k
Figure 41. FFT 0 dB 1 kHz SE, 4
dBr +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 1 0 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
Figure 42. FFT -60 dB SE 1 khz SE, 2
dBr +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 1 0 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
27/71
Electrical characteristics curves Figure 43. FFT -60 dB SE 1 kHz SE, 4
dBr +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 1 0 -1 2 0 -1 3 0 -1 4 0 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
STA323W
Figure 44. FFT -60 dB SE 1 kHz SE, 3
dBr +0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 0 0 -1 1 0 -1 2 0 -1 3 0 -1 4 0 20 50 100 200 500 Hz 1k 2k 5k 10k 20k
Figure 45. PSRR SE: 500 mV ripple
dBr A +10 +0 -1 0 -2 0 -3 0 -4 0 -5 0 2 ohm -6 0 3 ohm -7 0 4 ohm -8 0 -9 0 -1 0 0
20
30
40
50
60 Hz
70 80 90 100
200
28/71
STA323W
Pin descriptions
5
Pin descriptions
OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3)
The half-bridge PWM outputs 1A, 1B, 2A and 2B provide the inputs signals to the speakers.
OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3)
Driving RESET low sets all outputs low and returns all register settings to their defaults. The reset is asynchronous to the internal clock.
OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3)
The SDA (I2C Data) and SCL (I2C Clock) pins operate according to the I2C specification (See Chapter 6 on page 30.) Fast-mode (400 kB/sec.) I2C communication is supported.
OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3)
The phase locked loop power is applied here. This +3.3V supply must be well bypassed and filtered for noise immunity. The audio performance of the device is critically dependent upon the PLL circuit.
OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3)
This is the master clock input required for the operation of the digital core. The master clock must be an integer multiple of the LR clock frequency. Typically, the master clock frequency is 12.288 MHz (256 * Fs) for a 48kHz sample rate, which is the default at power-up. Do not over-clock the device (use a frequency higher than that recommended for the system clock) otherwise it may not operate correctly or be able to communicate.
OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3)
The PLL filter connects to external filter components for PLL loop compensation. Refer to the schematic diagram Figure 9: Power schematic for 1 mono parallel channel on page 11 for the recommended circuit.
OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3)
The serial or bit clock input is for framing each data bit. The bit clock frequency, using I2S serial format, is typically 64 * Fs .
OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3)
PCM audio information enters the device here. Six format choices are available including I2S, left- or right-justified, LSB or MSB first, with word widths of 16, 18, 20 and 24 bits.
OUT1A, 1B, 2A and 2B (Pins 16, 10, 9 and 3)
The left/right clock input is for data word framing. The clock frequency is at the input sample rate Fs.
29/71
STA323W I2C bus specification
STA323W
6
STA323W I2C bus specification
The STA323W supports the I2C fast mode (400 Kbit/s) protocol. This protocol defines any device that sends data on to the bus as a transmitter and any device that reads the data as a receiver. The device that controls the data transfer is known as the master and the other as the slave. The master always starts the transfer and provides the serial clock for synchronization. The STA323W is always a slave device in all of its communications.
6.1
6.1.1
Communication protocol
Data transition or change
Data changes on the SDA line must only occur when the SCL clock is low. SDA transition while the clock is high is used to identify a START or STOP condition.
6.1.2
Start condition
START is identified by a high to low transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A START condition must precede any command for data transfer.
6.1.3
Stop condition
STOP is identified by a low to high transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A STOP condition terminates communication between STA323W and the bus master.
6.1.4
Data input
During the data input the STA323W samples the SDA signal on the rising edge of clock SCL. For correct device operation the SDA signal must be stable during the rising edge of the clock and the data can change only when the SCL line is low.
6.2
Device addressing
To start communication between the master and the STA323W, the master must initiate with a START condition. Following this, the master sends 8 bits (MSB first) on the SDA line corresponding to the device select address and read or write mode. The 7 most significant bits are the device address identifiers, corresponding to the I2C bus definition. In the STA323W the I2C interface uses a device address of 0x34 or 0011010x. The 8th bit (LSB) identifies read or write operation, RW. This bit is set to 1 in read mode and 0 for write mode. After a START condition the STA323W identifies the device address on the bus. If a match is found, it acknowledges the identification on the SDA bus during the 9th bit time. The byte following the device identification byte is the internal space address.
30/71
STA323W
STA323W I2C bus specification
6.3
Write operation
Following the START condition the master sends a device select code with the RW bit set to 0. The STA323W acknowledges this and then the master writes the internal address byte. After receiving the internal byte address the STA323W again responds with an acknowledgement.
6.3.1
Byte write
In the byte write mode the master sends one data byte. This is acknowledged by the STA323W. The master then terminates the transfer by generating a STOP condition.
6.3.2
Multi-byte write
The multi-byte write modes can start from any internal address. Sequential data bytes are written to sequential addresses within the STA323W. The master generates a STOP condition to terminate the transfer.
6.4
6.4.1
Read operation
Current address byte read
Following the START condition the master sends a device select code with the RW bit set to 1. The STA323W acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition.
Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are read from sequential addresses within the STA323W. The master acknowledges each data byte read and then generates a STOP condition to terminate the transfer.
6.4.2
Random address byte read
Following the START condition the master sends a device select code with the RW bit set to 0. The STA323W acknowledges this and then the master writes the internal address byte. After receiving, the internal byte address the STA323W again responds with an acknowledgement. The master then initiates another START condition and sends the device select code with the RW bit set to 1. The STA323W acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition.
Random address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are then read from sequential addresses within the STA323W. The master acknowledges each data byte read and then generates a STOP condition to terminate the transfer.
31/71
STA323W I2C bus specification
STA323W
6.5
Write mode sequence
Figure 46. I2C write procedure
ACK BYTE WRITE START DEV-ADDR SUB-ADDR
ACK DATA IN
ACK
RW
STOP
ACK MULTIBYTE WRITE START DEV-ADDR SUB-ADDR
ACK DATA IN
ACK DATA IN
ACK
RW
STOP
6.6
Read mode sequence
Figure 47. I2C read procedure
ACK CURRENT ADDRESS READ START NO ACK
DEV-ADDR
DATA
RW ACK ACK SUB-ADDR
STOP ACK DEV-ADDR DATA NO ACK
RANDOM ADDRESS READ START
DEV-ADDR
RW RW= ACK HIGH DEV-ADDR DATA ACK
START
RW ACK DATA DATA NO ACK
STOP
SEQUENTIAL CURRENT READ START
STOP ACK ACK SUB-ADDR DEV-ADDR ACK DATA ACK DATA ACK DATA NO ACK
SEQUENTIAL RANDOM READ START
DEV-ADDR
RW
START
RW
STOP
32/71
STA323W
Register descriptions
7
Table 12.
Address 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x1F 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F
Register descriptions
Register summary
Name ConfA ConfB ConfC ConfD ConfE ConfF Mmute Mvol C1Vol C2Vol C3Vol Auto1 Auto2 Auto3 C1Cfg C2Cfg C3Cfg Tone L1ar L1atrt L2ar L2atrt Cfaddr2 B1cf1 B1cf2 B1cf3 B2cf1 B2cf2 B2cf3 A1cf1 A1cf2 A1cf3 C1OM1 C2OM1 C3OM1 TTC3 L1A3 L1AT3 L2A3 L2AT3 CFA7 C1B23 C1B15 C1B7 C2B23 C2B15 C2B7 C3B23 C3B15 C3B7 C1OM0 C2OM0 C3OM0 TTC2 L1A2 L1AT2 L2A2 L2AT2 CFA6 C1B22 C1B14 C1B6 C2B22 C2B14 C2B6 C3B22 C3B14 C3B6 C1LS1 C2LS1 C3LS1 TTC1 L1A1 L1AT1 L2A1 L2AT1 CFA5 C1B21 C1B13 C1B5 C2B21 C2B13 C2B5 C3B21 C3B13 C3B5 MV7 C1V7 C2V7 C3V7 AMPS XO3 XO2 MV6 C1V6 C2V6 C3V6 MV5 C1V5 C2V5 C3V5 AMGC1 XO1 MV4 C1V4 C2V4 C3V4 AMGC0 XO1 PEQ4 C1LS0 C2LS0 C3LS0 TTC0 L1A0 L1AT0 L2A0 L2AT0 CFA4 C1B20 C1B12 C1B4 C2B20 C2B12 C2B4 C3B20 C3B12 C3B4 MV3 C1V3 C2V3 C3V3 AMV1 AMAM2 PEQ3 C1BO C2BO C3BO BTC3 L1R3 L1RT3 L2R3 L2RT3 CFA3 C1B19 C1B11 C1B3 C2B19 C2B11 C2B3 C3B19 C3B11 C3B3 MV2 C1V2 C2V2 C3V2 AMV0 AMAM1 PEQ2 C1VBP C2VBP C3VBP BTC2 L1R2 L1RT2 L2R2 L2RT2 CFA2 C1B18 C1B10 C1B2 C2B18 C2B10 C2B2 C3B18 C3B10 C3B2 BTC1 L1R1 L1RT1 L2R1 L2RT1 CFA1 C1B17 C1B9 C1B1 C2B17 C2B9 C2B1 C3B17 C3B9 C3B1 BTC0 L1R0 L1RT0 L2R0 L2RT0 CFA0 C1B16 C1B8 C1B0 C2B16 C2B8 C2B0 C3B16 C3B8 C3B0 MV1 C1V1 C2V1 C3V1 AMEQ1 AMAM0 PEQ1 C1EQBP C2EQBP MME SVE EAPD D7 FDRB C2IM D6 TWAB C1IM CSZ4 ZDE ZCE PWDN D5 TWRB DSCKE CSZ3 DRC DCCV ECLE IR1 SAIFB CSZ2 BQL PWMS LDTE D4 IR0 SAI3 CSZ1 PSL AME BCLE D3 D2 MCS2 SAI2 CSZ0 DSPB RES IDE D1 MCS1 SAI1 OM1 DEMP MPC OCFG1 D0 MCS0 SAI0 OM0 HPB MPCV OCFG0 MMute MV0 C1V0 C2V0 C3V0 AMEQ0 AMAME PEQ0 C1TCB C2TCB
33/71
Register descriptions Table 12.
Address 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D
STA323W
Register summary (continued)
Name A2cf1 A2cf2 A2cf3 B0cf1 B0cf2 B0cf3 Cfud MPCC1 MPCC2 RES RES FDRC1 FDRC2 Status MPCC15 MPCC7 RES RES FDRC15 FDRC7 PLLUL MPCC14 MPCC6 RES RES FDRC14 FDRC6 MPCC13 MPCC5 RES RES FDRC13 FDRC5 MPCC12 MPCC4 RES RES FDRC12 FDRC4 MPCC11 MPCC3 RES RES FDRC11 FDRC3 MPCC10 MPCC2 RES RES FDRC10 FDRC2 D7 C4B23 C4B15 C4B7 C5B23 C5B15 C5B7 D6 C4B22 C4B14 C4B6 C5B22 C5B14 C5B6 D5 C4B21 C4B13 C4B5 C5B21 C5B13 C5B5 D4 C4B20 C4B12 C4B4 C5B20 C5B12 C5B4 D3 C4B19 C4B11 C4B3 C5B19 C5B11 C5B3 D2 C4B18 C4B10 C4B2 C5B18 C5B10 C5B2 D1 C4B17 C4B9 C4B1 C5B17 C5B9 C5B1 WA MPCC9 MPCC1 RES RES FDRC9 FDRC1 FAULT D0 C4B16 C4B8 C4B0 C5B16 C5B8 C5B0 W1 MPCC8 MPCC0 RES RES FDRC8 FDRC0 TWARN
7.1
Configuration register A (address 0x00)
D7 FDRB 0 D6 TWAB 1 D5 TWRB 1 D4 IR1 0 D3 IR0 0 D2 MCS2 0 D1 MCS1 1 D0 MCS0 1
7.1.1
Master clock select
Table 13.
Bit 0 1 2 R/W R/W R/W R/W
Master clock select
RST 1 1 0 Name MCS0 MCS1 MCS2 Description Master clock select: selects the ratio between the input I2S sample frequency and the input clock.
The STA323W supports sample rates of 32 kHz, 44.1 kHz, 48 khz, 88.2 kHz, and 96 kHz. Therefore the internal clock is:

32.768 MHz for 32 kHz 45.1584 MHz for 44.1 khz, 88.2 kHz, and 176.4 kHz 49.152 MHz for 48 kHz, 96 kHz, and 192 kHz
34/71
STA323W
Register descriptions The external clock frequency provided to the XTI pin must be a multiple of the input sample frequency (fs). The correlation between the input clock and the input sample rate is determined by the status of the MCSx bits and the IR (Input Rate) register bits. The MCSx bits determine the PLL factor generating the internal clock and the IR bit determines the oversampling ratio used internally. Table 14. IR and MCS settings for input sample rate and clock rate
MCS(2..0) IR 000 00 01 1X 768fs 384fs 384fs 001 512fs 256fs 256fs 010 384fs 192fs 192fs 011 256fs 128fs 128fs 100 128fs 64fs 64fs 101 576fs x x
Input sample rate fs (kHz) 32, 44.1, 48 88.2, 96 176.4, 192
7.1.2
Interpolation ratio select
Table 15.
Bit 4...3
Interpolation ratio select
R/W RST 00 Name IR (1...0) Description Selects internal interpolation ratio based on input I2S sample frequency
R/W
The STA323W has variable interpolation (re-sampling) settings such that internal processing and DDX output rates remain consistent. The first processing block interpolates by either 2 times or 1 time (pass-through) or provides a down-sample by a factor of 2. The IR bits determine the re-sampling ratio of this interpolation. Table 16. IR bit settings as a function of input sample rate
IR (1, 0) 00 00 00 01 01 10 10 1st stage interpolation ratio 2 times over-sampling 2 times over-sampling 2 times over-sampling Pass-Through Pass-Through Down-sampling by 2 Down-sampling by 2
Input sample rate Fs (kHz) 32 44.1 48 88.2 96 176.4 192
35/71
Register descriptions
STA323W
7.1.3
Thermal warning recovery bypass
Table 17.
Bit 5
Thermal warning recovery bypass
RST 1 TWRB Name Description 0: Thermal warning Recovery enabled 1: Thermal warning Recovery disabled
R/W R/W
If the thermal warning adjustment is enabled (TWAB=0), then the thermal warning recovery determines if the adjustment is removed when thermal warning is negative. If TWRB=0 and TWAB=0, then, when a thermal warning disappears, the gain adjustment determined by the thermal warning post-scale (default = -3 dB) is removed and the gain is applied to the system. If TWRB=1 and TWAB=0, then when a thermal warning disappears, the thermal warning post-scale gain adjustment remains until TWRB is changed to zero or the device is reset.
7.1.4
Thermal warning adjustment bypass
Table 18.
Bit 6
Thermal warning adjustment bypass
RST 1 TWAB Name Description 0: thermal warning adjustment enabled 1: thermal warning adjustment disabled
R/W R/W
The STA323W on-chip power output block provides feedback to the digital controller by the power control block inputs. The TWARN input is used to indicate a thermal warning condition. When TWARN is active (set to 0 for a period greater than 400 ms) the power control block forces an adjustment to the modulation limit in an attempt to eliminate the thermal warning condition. Once the thermal warning volume adjustment is applied, whether the gain is reapplied when TWARN is inactive, depends on the TWRB bit.
7.1.5
Fault detect recovery bypass
Table 19.
Bit 7
Fault detect recovery bypass
RST 0 FDRB Name Description 0: fault detector recovery enabled 1: fault detector recovery disabled
R/W R/W
The DDX power block provides feedback to the digital controller using inputs to the power control block. The FAULT input is used to indicate a fault condition (either over-current or thermal). When FAULT is active (set to 0), the power control block attempts a recovery from the fault by activating the tri-state output (setting it to 0 which directs the power output block to begin recovery). It holds it at 0 for period of time in the range of 0.1 ms to 1 second as defined by the Fault-Detect Recovery Constant register (FDRC registers 29-2Ah), then toggles it back to 1. This sequence is repeated as long as the fault indication exists. This feature is enabled by default but can be bypassed by setting the FDRB control bit to 1.
36/71
STA323W
Register descriptions
7.2
Configuration register B (address 0x01)
D7 C1IM 1 D6 C1IM 0 D5 DSCKE 0 D4 SAIFB 0 D3 SAI3 0 D2 SAI2 0 D1 SAI1 0 D0 SAI0 0
7.2.1
Serial audio input interface format
Table 20.
Bit 3...0 R/W R/W
Serial audio input interface format
RST 0000 Name SAI (3...0) Description Determines the interface format of the input serial digital audio interface.
7.3
Serial data interface
The STA323W serial audio input interfaces with standard digital audio components and accepts several different serial data formats. The STA323W always acts as a slave when receiving audio input from standard digital audio components. Serial data for two channels is provided using 3 input pins: left/right clock LRCKI (pin 33), serial clock BICKI (pin 31), and serial data 1 and 2 SDI12 (pin 32). The SAI register (configuration register B - 0x01, bits D3-D0) and the SAIFB register (configuration register B - 0x01, bit D4) are used to specify the serial data format. The default serial data format is I2S, MSB first. The formats available are shown in Figure 48 and in Table 21, Table 22, and Table 22. Figure 48. General serial input and output formats
I2S
LRCLK Left Right
SCLK
SDATA
MSB
LSB
MSB
LSB
MSB
Left Justified
LRCLK Left Right
SCLK
SDATA
MSB
LSB
MSB
LSB
MSB
Right Justified
LRCLK Left Right
SCLK
SDATA
MSB
LSB
MSB
LSB
MSB
For example, SAI=1110 and SAIFB=1 specifies right justified 16-bit data, LSB first.
37/71
Register descriptions
STA323W
Table 22. lists the serial audio input formats supported by STA323W when BICKI = 32 * fs, 48 * fs or 64 * fs, where the sampling rate fs = 32, 44.1, 48, 88.2, 96, 176.4 or 192 kHz. Table 21. First bit selection table
SAIFB 0 1 Format MSB first LSB first
Note:
Serial input and output formats are specified distinctly. Table 22.
BICKI 32fs
Supported serial audio input formats
SAI (3...0) 1100 1110 SAIFB X X X X X 0 1 X X X X X X X X X X X 0 1 X X X X X X Interface format I2S 15-bit data Left/right-justified 16-bit data I2S 23-bit data I2S 20-bit data I2S 18-bit data MSB first I2S 16-bit data LSB first I2S 16-bit data Left-justified 24-bit data Left-justified 20-bit data Left-justified 18-bit data Left-justified 16-bit data Right-justified 24-bit data Right-justified 20-bit data Right-justified 18-bit data Right-justified 16-bit data I2S 24-bit data I2S 20-bit data I2S 18-bit data MSB first I2S 16-bit data LSB first I2S 16-bit data Left-justified 24-bit data Left-justified 20-bit data Left-justified 18-bit data Left-justified 16-bit data Right-justified 24-bit data Right-justified 20-bit data
48fs
0100 0100 1000 0100 1100 0001 0101 1001 1101 0010 0110 1010 1110
64fs
0000 0100 1000 0000 1100 0001 0101 1001 1101 0010 0110
38/71
STA323W Table 22.
BICKI
Register descriptions Supported serial audio input formats (continued)
SAI (3...0) 1010 1110 SAIFB X X Interface format Right-justified 18-bit data Right-justified 16-bit data
Table 23.
Serial input data timing characteristics (Fs = 32 to 192 kHz)
Signal Frequency 12.5 MHz max. 40 ns min. 20 ns min. 20 ns min. 20 ns min. 20 ns min.
BICKI frequency (slave mode) BICKI pulse width high (T1) (slave mode) BICKI active to LRCKI edge delay (T2) BICKI active to LRCKI edge delay (T3) SDI valid to BICKI active setup (T4) BICKI active to SDI hold time (T5)
Figure 49. Serial input and data timing
T 2 T 3 T 1 T 0
LCI RK BK II C
T 4
SI D
T 5
7.3.1
Delay serial clock enable
Table 24.
Bit R/W
Delay serial clock enable
RST Name Description 0: no serial clock delay 1: serial clock delay by 1 core clock cycle to tolerate anomalies in some I2S master devices
5
R/W
0
DSCKE
Table 25.
Bit 6 7 R/W R/W R/W
g
Channel input mapping
RST 0 1 C1IM C2IM Name Description 0: processing channel 1 receives left I2S input 1: processing channel 1 receives right I2S input 0: processing channel 2 receives left I2S input 1: processing channel 2 receives right I2S input
Each channel received from the I2S can be mapped to any internal processing channel via the channel input mapping registers. This allows processing flexibility. The default settings of these registers map each I2S input channel to its corresponding processing channel.
39/71
Register descriptions
STA323W
7.4
Configuration register C (address 0x02)
D7 D6 CSZ4 1 D5 CSZ3 0 D4 CSZ2 0 D3 CSZ1 0 D2 CSZ0 0 D1 OM1 1 D0 OM0 0
7.4.1
DDX(R) power output mode
Table 26.
Bit 1...0
DDX(R) power output mode
R/W RST 10 Name OM (1...0) Description Selects configuration of DDX(R) output.
R/W
The DDX(R) power output mode selects how the DDX(R) output timing is configured. Different power devices can use different output modes. The recommended use is OM = 10. When OM=11 the CSZ bits determine the size of the DDX(R) compensating pulse. Table 27. DDX(R) output modes
OM (1,0) 00 01 10 11 Not used Not used Recommended Variable compensation Output stage - mode
7.4.2
DDX(R) variable compensating pulse size
The DDX(R) variable compensating pulse size is intended to adapt to different power stage ICs. Contact ST for support when using this function. Table 28. DDX(R) compensating pulse
Compensating pulse size 0 clock period compensating pulse size 1 clock period compensating pulse size ... 16 clock period compensating pulse size ... 31 clock period compensating pulse size
CSZ (4...0) 00000 00001 ... 10000 ... 11111
40/71
STA323W
Register descriptions
7.5
Configuration register D (address 0x03)
D7 MME 0 D6 ZDE 0 D5 DRC 0 D4 BQL 0 D3 PSL 0 D2 DSPB 0 D1 DEMP 0 D0 HPB 0
7.5.1
High-pass filter bypass
Table 29.
Bit 0
High-pass filter bypass
R/W R/W 0 RST Name HPB Description 0: AC coupling high pass filter enabled 1: AC coupling high pass filter enabled
The STA323W features an internal digital high-pass filter for DC blocking. The purpose of this filter is to prevent DC signals from passing through a DDX(R) amplifier. DC signals can cause speaker damage.
7.5.2
De-emphasis
Table 30.
Bit 1
De-emphasis
R/W R/W 0 RST Name DEMP 0: no de-emphasis 1: de-emphasis Description
By setting this bit to 1, de-emphasis is implemented on all channels. DSPB (DSP Bypass, Bit D2, CFA) bit must be set to 0 for de-emphasis to function.
7.5.3
DSP bypass
Table 31.
Bit 2 R/W R/W
DSP bypass
RST 0 Name DSPB Description 0: normal operation 1: bypass of EQ and mixing functionality
Setting the DSPB bit bypasses all the EQ and mixing functionality of the STA323W core.
7.5.4
Post-scale link
Table 32.
Bit 3 R/W R/W
Post-scale link
RST 0 PSL Name Description 0: each channel uses individual post-scale value 1: each channel uses channel 1 post-scale value
41/71
Register descriptions
STA323W
Post-scale functionality is an attenuation placed after the volume control and directly before the conversion to PWM. Post-scale can also be used to limit the maximum modulation index and therefore the peak current. Setting 1, in the PSL register, causes the value stored in Channel 1 post-scale to be used for all three internal channels.
7.5.5
Biquad coefficient link
Table 33.
Bit 4 R/W R/W
Biquad coefficient link
RST 0 BQL Name Description 0: each channel uses coefficient values 1: each channel uses channel 1 coefficient values
For ease of use, all channels can use the biquad coefficients loaded into the channel 1 coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to be performed once.
7.5.6
Dynamic range compression/anti-clipping bit
Table 34.
Bit 5 R/W R/W
Dynamic range compression/anti-clipping bit
RST 0 DRC Name Description 0: limiters act in anti-clipping mode 1: limiters act in dynamic range compression mode
Both limiters can be used in one of two ways: anti-clipping or dynamic range compression. When used in anti-clipping mode the limiter threshold values are constant and dependent on the limiter settings. In dynamic range compression mode the limiter threshold values vary with the volume settings allowing a nighttime listening mode that provides a reduction in the dynamic range regardless of the volume level.
7.5.7
Zero-detect mute enable
Table 35.
Bit 6
Zero-detect mute enable
R/W RST 1 Name ZDE Description Setting of 1 enables the automatic zero-detect mute
R/W
Setting the ZDE bit enables the zero-detect automatic mute. When ZDE=1, the zero-detect circuit looks at the input data to each processing channel after the channel-mapping block. If any channel receives 2048 consecutive zero value samples (regardless of fs) then that individual channel is muted if this function is enabled.
42/71
STA323W
Register descriptions
7.6
Configuration register E (address 0x04)
D7 SVE 0 D6 ZCE 0 D5 RES 0 D4 PWMS 0 D3 AME 0 D2 RES 0 D1 MPC 0 D0 MPCV 0
7.6.1
Max power correction variable
Table 36.
Bit 0
Max power correction variable
R/W R/W 0 RST Name MPCV Description 0: use standard MPC coefficient 1: use MPCC bits for MPC coefficient
By enabling MPC and setting MPCV = 1, the max power correction becomes variable. By adjusting the MPCC registers (address 0x27-0x28) it is possible to adjust the THD at maximum unclipped power to a lower value for a particular application.
7.6.2
Max power correction
Table 37.
Bit 7
Max power correction
R/W R/W 1 RST Name MPC Description 0: MPC disabled 1: MPC enabled
Setting the MPC bit corrects the power device at high power. This mode lowers the THD+N of the full DDX(R) system at, and slightly below, maximum power output.
7.6.3
AM mode enable
Table 38.
Bit 3
AM mode enable
R/W R/W 0 RST Name AME Description 0: normal DDX(R) operation 1: AM reduction mode DDX(R) operation
The STA323W features a DDX(R) processing mode that minimizes the amount of noise generated in the frequency range of AM radio. This mode is intended for use when DDX(R) is operating in a device with an active AM tuner. The SNR of the DDX(R) processing is reduced to ~83 dB in this mode, which is still greater than the SNR of AM radio.
43/71
Register descriptions
STA323W
7.6.4
PWM speed mode
Table 39.
Bit 4 R/W R/W
PWM speed mode
RST 0 Name PWMS Normal or odd Description
Table 40.
PWM output speed selections
PWM output speed Normal speed (384kHz) all channels Odd speed (341.3kHz) all channels
PWMS (1...0) 0 1
7.6.5
Zero-crossing volume enable
Table 41.
Bit
Zero-crossing volume enable
R/W RST Name Description 1: volume adjustments will only occur at digital zerocrossings 0: volume adjustments will occur immediately
6
R/W
1
ZCE
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital zero-crossings no clicks are audible.
7.6.6
Soft volume update enable
Table 42.
Bit 7
Soft volume update enable
R/W RST 1 Name SVE Description 1: volume adjustments will use soft volume 0: volume adjustments will occur immediately
R/W
The STA323W includes a soft volume algorithm that steps through the intermediate volume values at a predetermined rate when a volume change occurs. By setting SVE=0 this can be bypassed and volume changes will jump from the old to the new value directly. This feature is available only if individual channel volume bypass bit is set to 0.
44/71
STA323W
Register descriptions
7.7
Configuration register F (address 0x05)
D7 EAPD 0 D6 PWDN 1 D5 ECLE 0 D4 RES 1 D3 BCLE 1 D2 IDE 1 D1 OCFG1 1 D0 OCFG0 0
7.7.1
Output configuration selection
Table 43.
Bit 1...0
Output configuration selection
R/W RST 00 Name OCFG (1...0) Description 00 - 2-channel (full-bridge) power, 1-channel DDX is default
R/W
Table 44.
Output configuration selections
Output power configuration 2 channel (full-bridge) power, 1 channel DDX: 1A/1B 1A/1B 2A/2B 2A/2B 2(half-bridge).1(full-bridge) on-board power: 1A 1A Binary 2A 1B Binary 3A/3B 2A/2B Binary Reserved 1 channel mono-parallel: 3A 1A/1B 3B 2A/2B
OCFG (1...0)
00
01
10 11
Table 45.
Bit 2
Invalid input detect mute enable
R/W RST 1 Name IDE 0: disabled 1: enabled Description
R/W
Setting the IDE bit enables this function, which looks at the input I2S data and clocking and automatically mutes all outputs if the signals are invalid. Table 46.
Bit 5
Binary clock loss detection enable
R/W RST 1 Name BCLE 0: disabled 1: enabled Description
R/W
Detects loss of input MCLK in binary mode and outputs 50% duty cycle to prevent audible noise when input clocking is lost.
45/71
Register descriptions Table 47.
Bit 7
STA323W Auto-EAPD on clock loss enable
R/W RST 0 Name ECLE 0: disabled 1: enabled Description
R/W
When ECLE is active, it issues a power device power down signal (EAPD) on clock loss detection. Table 48.
Bit 7
External amplifier power down
R/W RST 0 Name EAPD Description 0: external power stage power down active 1: normal operation
R/W
EAPD is used to actively power down a connected DDX(R) power device. This register has to be written to 1 at start-up to enable the DDX(R) power device for normal operation.
7.8
7.8.1
Volume control
Master controls
Master mute register (address 0x06)
D7 D6 D5 D4 D3 D2 D1 D0 MMUTE 0
Master volume register (Address 0x07)
D7 MV7 1 D6 MV6 1 D5 MV5 1 D4 MV4 1 D3 MV3 1 D2 MV2 1 D1 MV1 1 D0 MV0 1
Note:
The value of volume derived from MVOL is dependent on the AMV Auto Mode Volume settings.
7.8.2
Channel controls
Channel 1 volume (address 0x08)
D7 C1V7 0 D6 C1V6 1 D5 C1V5 1 D4 C1V4 0 D3 C1V3 0 D2 C1V2 0 D1 C1V1 0 D0 C1V0 0
46/71
STA323W
Register descriptions
Channel 2 volume (address 0x09)
D7 C2V7 0 D6 C2V6 1 D5 C2V5 1 D4 C2V4 0 D3 C2V3 0 D2 C2V2 0 D1 C2V1 0 D0 C2V0 0
Channel 3 volume (address 0x0A)
D7 C3V7 0 D6 C3V6 1 D5 C3V5 1 D4 C3V4 0 D3 C3V3 0 D2 C3V2 0 D1 C3V1 0 D0 C3V0 0
7.8.3
Volume description
The volume structure of the STA323W consists of individual volume registers for each of the three channels and a master volume register, and individual channel volume trim registers. The channel volume settings are normally used to set the maximum allowable digital gain and to hard-set gain differences between certain channels. These values are normally set at the initialization of the IC and not changed. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB to -80 dB. The master volume control is normally mapped to the master volume of the system. The values of these two settings are summed to find the actual gain or volume value for any given channel. When set to 1, the Master Mute will mute all channels, whereas the individual channel mutes (CxM) will mute only that channel. Both the Master Mute and the Channel Mutes provide a "soft mute" with the volume ramping down to mute in 4096 samples from the maximum volume setting at the internal processing rate (~96 kHz). A "hard mute" can be obtained by setting a value of all 1's (FFh) in any channel volume register or the master volume register. When volume offsets are provided, via the master volume register, any channel whose total volume is less than -100dB is muted. All changes in volume take place at zero-crossings when ZCE = 1 (configuration register E) on a per channel basis as this creates the smoothest possible volume transitions. When ZCE=0, volume updates occur immediately. The STA323W also features a soft-volume update function. When SVE = 1 (in configuration register E) the volume ramps between intermediate values when the value is updated, This feature can be disabled by setting SVE = 0. Each channel also contains an individual channel volume bypass. If a particular channel has volume bypassed via the CxVBP = 1 register then only the channel volume setting for that particular channel affects the volume setting, the master volume setting does not affect that channel. Also, master soft-mute does not affect the channel if CxVBP = 1. Each channel also contains a channel mute. If CxM = 1 a soft mute is performed on that channel.
47/71
Register descriptions Table 49. Master volume offset as a function of MV (7..0)
MV (7..0) 00000000 (00h) 00000001 (01h) 00000010 (02h) ... 01001100 (4Ch) ... 11111110 (FEh) 11111111 (FFh) Volume offset from channel value 0dB -0.5dB -1dB ... -38dB ... -127dB Hard Master Mute
STA323W
Table 50.
Channel volume as a function of CxV (7..0)
CxV (7..0) volume +48dB +47.5dB +47dB ... +0.5dB 0dB -0.5dB ... -79.5 dB Hard channel mute
00000000 (0x00) 00000001 (0x01) 00000010 (0x02) ... 01100001 (0x5F) 01100000 (0x60) 01011111 (0x61) ... 11111110 (0xFE) 11111111 (0xFF)
7.9
7.9.1
Automode registers
Register - automodes EQ, volume, GC (address 0x0B)
D7 AMPS 1 D6 D5 AMGC1 0 D4 AMGC0 0 D3 AMV1 0 D2 AMV0 0 D1 AMEQ1 0 D0 AMEQ0 0
Table 51.
Automode EQ
AMEQ (1,0) Mode (Biquad 1-4) User Programmable Preset EQ - PEQ bits Auto Volume Controlled Loudness Curve Not used
00 01 10 11
48/71
STA323W
Register descriptions Setting AMEQ to any value, other than 00, enables automode EQ. When set, biquads 1-4 are not user programmable. Any coefficient settings for these biquads is ignored. Also when automode EQ is used the pre-scale value for channels 1 and 2 becomes hard-set to -18 dB. Table 52. Automode volume
AMV (1,0) 00 01 10 11 Mode (MVOL) MVOL 0.5dB 256 steps (standard) MVOL auto curve 30 steps MVOL auto curve 40 steps MVOL auto curve 50 steps
Table 53.
Auto mode gain compression/limiters
Mode User programmable GC AC no clipping AC limited clipping (10%) DRC night time listening mode
AMGC (1...0) 00 01 10 11
Table 54.
Bit R/W
AMPS - automode auto pre scale
RST Name Description Auto Mode Pre-Scale 0 - -18 dB used for pre-scale when AMEQ /= 00 1 - User defined pre-scale when AMEQ /= 00
0
R/W
0
AMPS
Register - automode AM/pre-Scale/bass management scale (address 0x0C)
D7 XO3 0 D6 XO2 0 D5 XO1 0 D4 XO0 0 D3 AMAM2 0 D2 AMAM1 0 D1 AMAM0 0 D0 AMAME 0
Table 55.
Bit 0 R/W R/W
Automode AM switching enable
RST 0 000 Name AMAME AMAM (2...0) Description 0: switching frequency determined by PWMS setting 1: switching frequency determined by AMAM settings Default: 000
3...1 R/W
Table 56.
Auto mode AM switching frequency selection
48 kHz/96 kHz input Fs 0.535 MHz - 0.720 MHz 0.721 MHz - 0.900 MHz 0.901 MHz - 1.100 MHz 1.101 MHz - 1.300 MHz 44.1 kHz/88.2 kHz input Fs 0.535 MHz - 0.670 MHz 0.671 MHz - 0.800 MHz 0.801 MHz - 1.000 MHz 1.001 MHz - 1.180 MHz
AMAM (2..0) 000 001 010 011
49/71
Register descriptions Table 56. Auto mode AM switching frequency selection (continued)
48 kHz/96 kHz input Fs 1.301 MHz - 1.480 MHz 1.481 MHz - 1.600 MHz 1.601 MHz - 1.700 MHz
STA323W
AMAM (2..0) 100 101 110
44.1 kHz/88.2 kHz input Fs 1.181 MHz - 1.340 MHz 1.341 MHz - 1.500 MHz 1.501 MHz - 1.700 MHz
When DDX(R) is used with an AM radio tuner, it is recommended to use the AMAM bits to automatically adjust the output PWM switching rate so that it depends on the specific radio frequency that the tuner is receiving. The values used in AMAM are also dependent upon the sample rate that is determined by the ADC used. Table 57.
Bit R/W
Automode crossover setting
RST Name Description 000: user defined crossover coefficients are used Otherwise: preset coefficients are used for the required crossover setting
7...4 R/W
0
XO (3...0)
Table 58.
Crossover frequency selection
Bass management - crossover frequency User 80 Hz 100 Hz 120 Hz 140 Hz 160 Hz 180 Hz 200 Hz 220 Hz 240 Hz 260 Hz 280 Hz 300 Hz 320 Hz 340 Hz 360 Hz
XO (2..0) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
50/71
STA323W
Register descriptions
7.9.2
Register - preset EQ settings (address 0x0D)
D7 D6 D5 D4 PEQ4 0 D3 PEQ3 0 D2 PEQ2 0 D1 PEQ1 0 D0 PEQ0 0
Table 59.
Preset EQ selection
Setting Flat Rock Soft Rock Jazz Classical Dance Pop Soft Hard Party Vocal Hip-Hop Dialog Bass-boost #1 Bass-boost #2 Bass-boost #3 Loudness 1 (least boost) Loudness 2 Loudness 3 Loudness 4 Loudness 5 Loudness 6 Loudness 7 Loudness 8 Loudness 9 Loudness 10 Loudness 11 Loudness 12 Loudness 13
PEQ (3..0) 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100
51/71
Register descriptions Table 59. Preset EQ selection (continued)
Setting Loudness 14 Loudness 15 Loudness 16 (most boost)
STA323W
PEQ (3..0) 11101 11110 11111
7.10
7.10.1
Channel configuration registers
Channel 1 configuration (address 0x0E)
D7 C1OM1 0 D6 C1OM0 0 D5 C1LS1 0 D4 C1LS0 0 D3 C1BO 0 D2 C1VBP 0 D1 C1EQBP 0 D0 C1TCB 0
7.10.2
Channel 2 configuration (address 0x0F)
D7 C2OM1 0 D6 C2OM0 0 D5 C2LS1 0 D4 C2LS0 0 D3 C2BO 0 D2 C2VBP 0 D1 C2EQBP 0 D0 C2TCB 0
7.10.3
Channel 3 configuration (address 0x10)
D7 C3OM1 0 D6 C3OM0 0 D5 C3LS1 0 D4 C3LS0 0 D3 C3BO 0 D2 C3VBP 0 D1 D0
EQ control can be bypassed on a per channel basis. If EQ control is bypassed on a given channel the prescale and all 9 filters (high-pass, biquads, de-emphasis, bass management cross-over, bass, treble in any combination) are bypassed for that channel. CxEQBP:

0: perform EQ on channel X (normal operation) 1: bypass EQ on channel X
Tone control (bass and treble) can be bypassed on a per channel basis. If tone control is bypassed on a given channel the two filters that tone control utilizes are bypassed. CxTCB:

0: perform tone control on channel x - (default operation) 1: bypass tone control on channel x
Each channel can be configured to output either the patented DDX PWM data or standard binary PWM encoded data. By setting the CxBO bit to `1', each channel can be individually set to binary operation mode.
52/71
STA323W
Register descriptions It is also possible to map each channel independently to either of the two limiters available within the STA323W. In the default mode the channels are not mapped to a limiter. Table 60. Channel Limiter Mapping Selection
Channel limiter mapping Channel has limiting disabled Channel is mapped to limiter #1 Channel is mapped to limiter #2
CxLS (1,0) 00 01 10
Each PWM output channel can receive data from any channel output of the volume block. Which channel a particular PWM output receives depends on the CxOM register bits for that channel. Table 61. Channel PWM output mapping
CxOM (1...0) 00 01 10 11 PWM output from Channel 1 Channel 2 Channel 3 Not used
7.11
Tone control (address 0x11)
D7 TTC3 0 D6 TTC2 1 D5 TTC1 1 D4 TTC0 1 D3 BTC3 0 D2 BTC2 1 D1 BTC1 1 D0 BTC0 1
Table 62.
Tone control boost/cut selection
BTC (3...0)/TTC (3...0) 0000 0001 ... 0111 0110 0111 1000 1001 ... 1101 1110 1111 Boost/cut -12 dB -12 dB ... -4 dB -2 dB 0 dB +2 dB +4 dB ... +12 dB +12 dB +12 dB
53/71
Register descriptions
STA323W
7.12
7.12.1
Dynamics control
Limiter 1 attack/release threshold (address 0x12)
D7 L1A3 0 D6 L1A2 1 D5 L1A1 1 D4 L1A0 0 D3 L1R3 1 D2 L1R2 0 D1 L1R1 1 D0 L1R0 0
7.12.2
Limiter 1 attack/release threshold (address 0x13)
D7 L1AT3 0 D6 L1AT2 1 D5 L1AT1 1 D4 L1AT0 0 D3 L1RT3 1 D2 L1RT2 0 D1 L1RT1 0 D0 L1RT0 1
7.12.3
Limiter 2 attack/release rate (address 0x14)
D7 L2A3 0 D6 L2A2 1 D5 L2A1 1 D4 L2A0 0 D3 L2R3 1 D2 L2R2 0 D1 L2R1 1 D0 L2R0 0
7.12.4
Limiter 2 attack/release threshold (address 0x15)
D7 L2AT3 0 D6 L2AT2 1 D5 L2AT1 1 D4 L2AT0 0 D3 L2RT3 1 D2 L2RT2 0 D1 L2RT1 0 D0 L2RT0 1
7.12.5
Dynamics control description
The STA323W includes two independent limiter blocks. The purpose of the limiters is to automatically reduce the dynamic range of a recording to prevent the outputs from clipping in anti-clipping mode, or to actively reduce the dynamic range for a better listening environment (such as a night-time listening mode, which is often needed for DVDs.) The two modes are selected via the DRC bit in Configuration Register D, bit 5 address 0x03. Each channel can be mapped to Limiter1 or Limiter2, or not mapped. If a channel is not mapped, that channel will clip normally when 0 dB FS is exceeded. Each limiter will look at the present value of each channel that is mapped to it, select the maximum absolute value of all these channels, perform the limiting algorithm on that value, and then, if needed, adjust the gain of the mapped channels in unison. The limiter attack thresholds are determined by the LxAT registers. When the Attack Threshold has been exceeded, the limiter, when active, automatically starts reducing the gain. The rate at which the gain is reduced when the attack threshold is exceeded is dependent upon the attack rate register setting for that limiter. A peak-detect algorithms used to control the gain reduction.
54/71
STA323W
Register descriptions The release of limiter, when the gain is again increased, is dependent on an RMS-detect algorithm. The output of the volume limiter block is passed through an RMS filter. The output of this filter is compared with the release threshold, determined by the Release Threshold register. When the RMS filter output falls below the release threshold, the gain is increased at a rate dependent upon the release rate register. The gain can never be increased past its set value and therefore the release will only occur if the limiter has already reduced the gain. The release threshold value can be used to set what is effectively a minimum dynamic range. This is helpful as over-limiting can reduce the dynamic range to virtually zero and cause program material to sound "lifeless". In AC mode the attack and release thresholds are set relative to full-scale. In DRC mode the attack threshold is set relative to the maximum volume setting of the channels mapped to that limiter and the release threshold is set relative to the maximum volume setting plus the attack threshold. Figure 50. Basic limiter and volume flow diagram
Limiter
RMS
Gain/volume
Input Gain Attenuation Saturation
Output
Table 63.
Limiter attack rate selection
LxA (3...0) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 Attack rate dB/ms 3.1584 2.7072 2.2560 1.8048 1.3536 0.9024 0.4512 0.2256 0.1504 0.1123 0.0902 0.0752 0.0645 0.0564 Fast
55/71
Register descriptions Table 63. Limiter attack rate selection
LxA (3...0) 1110 1111 Attack rate dB/ms 0.0501 0.0451
STA323W
Slow
Table 64.
Limiter release rate selection
LxR (3...0) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Release rate dB/ms 0.5116 0.1370 0.0744 0.0499 0.0360 0.0299 0.0264 0.0208 0.0198 0.0172 0.0147 0.0137 0.0134 0.0117 0.0110 0.0104 Slow Fast
7.12.6
Anti-clipping mode
Table 65. Limiter attack - threshold selection (AC-mode)
LxAT (3...0) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 AC (dB relative to FS) -12 -10 -8 -6 -4 -2 0 +2 +3 +4
56/71
STA323W Table 65.
Register descriptions Limiter attack - threshold selection (AC-mode) (continued)
LxAT (3...0) 1010 1011 1100 1101 1110 1111 AC (dB relative to FS) +5 +6 +7 +8 +9 +10
Table 66.
.
Limiter release threshold selection (AC-mode)
LxRT (3...0) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 AC (dB relative to FS) - -29dB -20dB -16dB -14dB -12dB -10dB -8dB -7dB -6dB -5dB -4dB -3dB -2dB -1dB -0dB
7.12.7
Dynamic range compression mode
Table 67. Limiter attack - threshold selection (DRC-mode)
LxAT (3...0) 0000 0001 0010 0011 0100 0101 DRC (dB relative to volume) -31 -29 -27 -25 -23 -21
57/71
Register descriptions Table 67. Limiter attack - threshold selection (DRC-mode) (continued)
LxAT (3...0) 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
STA323W
DRC (dB relative to volume) -19 -17 -16 -15 -14 -13 -12 -10 -7 -4
Table 68.
.(
Limiter release threshold selection (DRC-mode)
LxRT (3...0) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 DRC (db relative to Volume + LxAT) - -38 dB -36 dB -33 dB -31 dB -30 dB -28 dB -26 dB -24 dB -22 dB -20 dB -18 dB -15 dB -12 dB -9 dB -6 dB
58/71
STA323W
User-programmable settings
8
8.1
User-programmable settings
EQ - biquad equation
The biquads use the equation that follows. This is shown in Figure 51. Y[n] = 2(b0/2)X[n] + 2(b1/2)X[n-1] + b2X[n-2] - 2(a1/2)Y[n-1] - a2Y[n-2] = b0X[n] + b1X[n-1] + b2X[n-2] - a1Y[n-1] - a2Y[n-2] where Y[n] represents the output and X[n] represents the input. Signed, fractional 28-bit multipliers are used, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF (0.9999998808). Coefficients stored in the user defined coefficient RAM are referenced in the following manner:

CxHy0 = b1/2 CxHy1 = b2 CxHy2 = -a1/2 CxHy3 = -a2 CxHy4 = b0/2
The x represents the channel and the y the biquad number. For example C3H41 is the b0/2 coefficient in the fourth biquad for channel 3. Figure 51. Biquad filter
b0/2 Z -1 b1/2 2 + 2 -a1/2 2 + Z -1
Z -1 b2 + -a2
Z -1
8.2
Pre-scale
The pre-scale block, which precedes the first biquad, is used for attenuation when filters are designed that boost frequencies above 0 dBFS. The Pre-Scale block is a single 28-bit signed multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. By default, all pre-scale factors are set to 0x7FFFFF.
8.3
Post-scale
The STA323W provides one additional multiplication after the last interpolation stage and before the distortion compensation on each channel. The post-scale block is a 24-bit signed fractional multiplier. The scale factor for this multiplier is loaded into RAM using the same I2C registers as the biquad coefficients and the mix. All channels can use the same settings as channel 1 by setting the post-scale link bit.
59/71
User-programmable settings
STA323W
8.4
Mix/bass management
The STA323W provides one post-EQ mixing block per channel. Each channel has two mixing coefficients, which are each 24-bit signed fractional multipliers, that correspond to the two channels of input to the mixing block. These coefficients are accessible via the User Controlled Coefficient RAM described below. The mix coefficients expressed as 24-bit signed, fractional numbers in the range +1.0 (8388607) to -1.0 (-8388608), are used to provide three channels of output from two channels of filtered input. Figure 52. Mix/bass management block diagram
Channel #1 from EQ C1MX1 . Channel #2 from EQ High pass XO filter Channel #1 to GC/vol
C1MX2 C2MX1 . High pass XO filter Channel #2 to GC/vol
C2MX2 C3MX1 . Low pass XO filter Channel #3 to GC/vol
C3MX2
User defined mix coefficients
Crossover frequency determined by XO setting. User defined when XO = 000
After mixing, STA323W also permits the implementation of crossover filters on all channels corresponding to 2.1 bass management operation. Channels 1 and 2 use a 1st order, highpass filter and channel 3 uses a 2nd order low-pass filter corresponding to the setting of the XO bits of I2C register 0Ch. If XO = 000, user specified crossover filters are used. By default these coefficients correspond to pass-through. However, the user can write these coefficients in a similar way as the EQ biquads. When user-defined setting is selected, the user can only write 2nd order crossover filters. This output is then passed on to the Volume and Limiter block.
60/71
STA323W
User-programmable settings
8.5
Calculating 24-bit signed fractional numbers from a dB value
The pre-scale, mixing, and post-scale functions of the STA323W use 24-bit signed fractional multipliers to attenuate signals. These attenuations can also invert the phase and therefore range in value from -1 to +1. It is possible to calculate the coefficient to use for a given negative dB value (attenuation) using the equations following.

non-inverting phase numbers 0 to +1: - - coefficient = round(8388607 * 10 ^ (dB/20)) coefficient = 16777216 - round(8388607 * 10^(dB/20)) inverting phase numbers 0 to -1:
As can be seen by the preceding equations, the value for positive phase 0dB is 0x7FFFFF and the value for negative phase 0dB is 0x800000.
8.6
8.6.1
User defined coefficient RAM
Coefficient address register 1 (address 0x16)
D7 CFA7 0 D6 CFA6 0 D5 CFA5 0 D4 CFA4 0 D3 CFA3 0 D2 CFA2 0 D1 CFA1 0 D0 CFA0 0
8.6.2
Coefficient b1data register bits 23...16 (address 0x17)
D7 C1B23 0 D6 C1B22 0 D5 C1B21 0 D4 C1B20 0 D3 C1B19 0 D2 C1B18 0 D1 C1B17 0 D0 C1B16 0
8.6.3
Coefficient b1data register bits 15...8 (address 0x18)
D7 C1B15 0 D6 C1B14 0 D5 C1B13 0 D4 C1B12 0 D3 C1B11 0 D2 C1B10 0 D1 C1B9 0 D0 C1B8 0
8.6.4
Coefficient b1data register bits 7...0 (address 0x19)
D7 C1B7 0 D6 C1B6 0 D5 C1B5 0 D4 C1B4 0 D3 C1B3 0 D2 C1B2 0 D1 C1B1 0 D0 C1B0 0
61/71
User-programmable settings
STA323W
8.6.5
Coefficient b2 data register bits 23...16 (address 0x1A)
D7 C2B23 0 D6 C2B22 0 D5 C2B21 0 D4 C2B20 0 D3 C2B19 0 D2 C2B18 0 D1 C2B17 0 D0 C2B16 0
8.6.6
Coefficient b2 data register bits 15...8 (address 0x1B)
D7 C2B15 0 D6 C2B14 0 D5 C2B13 0 D4 C2B12 0 D3 C2B11 0 D2 C2B10 0 D1 C2B9 0 D0 C2B8 0
8.6.7
Coefficient b2 data register bits 7...0 (address 0x1C)
D7 C2B7 0 D6 C2B6 0 D5 C2B5 0 D4 C2B4 0 D3 C2B3 0 D2 C2B2 0 D1 C2B1 0 D0 C2B0 0
8.6.8
Coefficient a1 data register bits 23...16 (address 0x1D)
D7 C1B23 0 D6 C1B22 0 D5 C1B21 0 D4 C1B20 0 D3 C1B19 0 D2 C1B18 0 D1 C1B17 0 D0 C1B16 0
8.6.9
Coefficient a1 data register bits 15...8 (address 0x1E)
D7 C3B15 0 D6 C3B14 0 D5 C3B13 0 D4 C3B12 0 D3 C3B11 0 D2 C3B10 0 D1 C3B9 0 D0 C3B8 0
8.6.10
Coefficient a1 data register bits 7...0 (address 0x1F)
D7 C3B7 0 D6 C3B6 0 D5 C3B5 0 D4 C3B4 0 D3 C3B3 0 D2 C3B2 0 D1 C3B1 0 D0 C3B0 0
62/71
STA323W
User-programmable settings
8.6.11
Coefficient a2 data register bits 23...16 (address 0x20)
D7 C4B23 0 D6 C4B22 0 D5 C4B21 0 D4 C4B20 0 D3 C4B19 0 D2 C4B18 0 D1 C4B17 0 D0 C4B16 0
8.6.12
Coefficient a2 data register bits 15...8 (address 0x21)
D7 C4B15 0 D6 C4B14 0 D5 C4B13 0 D4 C4B12 0 D3 C4B11 0 D2 C4B10 0 D1 C4B9 0 D0 C4B8 0
8.6.13
Coefficient a2 data register bits 7...0 (address 0x22)
D7 C4B7 0 D6 C4B6 0 D5 C4B5 0 D4 C4B4 0 D3 C4B3 0 D2 C4B2 0 D1 C4B1 0 D0 C4B0 0
8.6.14
Coefficient b0 data register bits 23...16 (address 0x23)
D7 C5B23 0 D6 C5B22 0 D5 C5B21 0 D4 C5B20 0 D3 C5B19 0 D2 C5B18 0 D1 C5B17 0 D0 C5B16 0
8.6.15
Coefficient b0 data register bits 15...8 (address 0x24)
D7 C5B15 0 D6 C5B14 0 D5 C5B13 0 D4 C5B12 0 D3 C5B11 0 D2 C5B10 0 D1 C5B9 0 D0 C5B8 0
8.6.16
Coefficient b0 data register bits 7...0 (address 0x25)
D7 C5B7 0 D6 C5B6 0 D5 C5B5 0 D4 C5B4 0 D3 C5B3 0 D2 C5B2 0 D1 C5B1 0 D0 C5B0 0
63/71
User-programmable settings
STA323W
8.6.17
Coefficient write control register (address 0x26)
D7 D6 D5 D4 D3 RA 0 D2 R1 0 D1 WA 0 D0 W1 0
Coefficients for EQ, Mix and Scaling are handled internally in the STA323W via RAM. Access to this RAM is available to the user via an I2C register interface. A collection of I2C registers are dedicated to this function. The first register contains base address of the coefficient: five sets of three registers store the values of the 24-bit coefficients to be written or that were read, and one contains bits used to control the reading or writing of the coefficients to RAM. The following are instructions for reading and writing coefficients.
8.7
Reading a coefficient from RAM
1. 2. 3. 4. 5. Write 8-bits of address to I2C register 0x16. Write `1' to bit R1 (D2) of I2C register 0x26. Read top 8-bits of coefficient in I2C address 0x17. Read middle 8-bits of coefficient in I2C address 0x18. Read bottom 8-bits of coefficient in I2C address 0x19.
8.8
Reading a set of coefficients from RAM
1. 2. 3. 4. 5. 6. 7. 8. 9. Write 8-bits of address to I2C register 0x16. Write `1' to bit RA (D3) of I2C register 0x26. Read top 8-bits of coefficient in I2C address 0x17. Read middle 8-bits of coefficient in I2C address 0x18. Read bottom 8-bits of coefficient in I2C address 0x19. Read top 8-bits of coefficient b2 in I2C address 0x1A. Read middle 8-bits of coefficient b2 in I2C address 0x1B. Read bottom 8-bits of coefficient b2 in I2C address 0x1C. Read top 8-bits of coefficient a1 in I2C address 0x1D.
10. Read middle 8-bits of coefficient a1 in I2C address 0x1E. 11. Read bottom 8-bits of coefficient a1 in I2C address 0x1F. 12. Read top 8-bits of coefficient a2 in I2C address 0x20. 13. Read middle 8-bits of coefficient a2 in I2C address 0x21. 14. Read bottom 8-bits of coefficient a2 in I2C address 0x22. 15. Read top 8-bits of coefficient b0 in I2C address 0x23. 16. Read middle 8-bits of coefficient b0 in I2C address 0x24. 17. Read bottom 8-bits of coefficient b0 in I2C address 0x25.
64/71
STA323W
User-programmable settings
8.9
Writing a single coefficient to RAM
1. 2. 3. 4. 5. Write 8-bits of address to I2C register 0x16. Write top 8-bits of coefficient in I2C address 0x17. Write middle 8-bits of coefficient in I2C address 0x18. Write bottom 8-bits of coefficient in I2C address 0x19. Write 1 to W1 bit in I2C address 0x26.
8.10
Writing a set of coefficients to RAM
1. 2. 3. 4. 5. 6. 7. 8. 9. Write 8-bits of starting address to I2C register 0x16. Write top 8-bits of coefficient b1 in I2C address 0x17. Write middle 8-bits of coefficient b1 in I2C address 0x18. Write bottom 8-bits of coefficient b1 in I2C address 0x19. Write top 8-bits of coefficient b2 in I2C address 0x1A. Write middle 8-bits of coefficient b2 in I2C address 0x1B. Write bottom 8-bits of coefficient b2 in I2C address 0x1C. Write top 8-bits of coefficient a1 in I2C address 0x1D. Write middle 8-bits of coefficient a1 in I2C address 0x1E.
10. Write bottom 8-bits of coefficient a1 in I2C address 0x1F. 11. Write top 8-bits of coefficient a2 in I2C address 0x20. 12. Write middle 8-bits of coefficient a2 in I2C address 0x21. 13. Write bottom 8-bits of coefficient a2 in I2C address 0x22. 14. Write top 8-bits of coefficient b0 in I2C address 0x23. 15. Write middle 8-bits of coefficient b0 in I2C address 0x24. 16. Write bottom 8-bits of coefficient b0 in I2C address 0x25. 17. Write 1 to WA bit in I2C address 0x26. The mechanism for writing a set of coefficients to RAM provides a method of updating the five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible unpleasant acoustic side-effects. When using this technique, the 8-bit address specifies the address of the biquad b1 coefficient (for example 0, 5, 10, 15, ..., 45 decimal), and the STA323W generates the RAM addresses as an offsets from this base value to write the complete set of coefficient data. Table 69. RAM block for biquads, mixing, and scaling
Index (hex) 0x00 0x01 0x02 0x03 0x04 0x05 Channel 1 - biquad 2 Channel 1 - biquad 1 Coefficient C1H10 (b1/2) C1H11 (b2) C1H12 (a1/2) C1H13 (a2) C1H14 (b0/2) C1H20 Default 0x000000 0x000000 0x000000 0x000000 0x400000 0x000000
Index (decimal) 0 1 2 3 4 5
65/71
User-programmable settings Table 69. RAM block for biquads, mixing, and scaling
Index (hex) ... 0x13 0x14 Channel 2 - biquad 1 21 ... 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0x15 ... 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B 0x3C 0x3D 0x3E 0x3F Channel 1 - post scale Channel 2 - post scale Channel 1 - post scale Channel 2 - post scale Channel 3 - post scale Thermal warning - post scale Channel 1 - mix 1 Channel 1 - mix 2 Channel 2 - mix 1 Channel 2 - mix 2 Channel 3 - mix 1 Channel 3 - mix 2 Unused Unused Low-Pass 2nd order filter For XO = 000 High-pass 2nd order filter For XO = 000 ... Channel 2 - biquad 4 C2H11 ... C2H44 C12H0 (b1/2) C12H1 (b2) C12H2 (a1/2) C12H3 (a2) C12H4 (b0/2) C12L0 (b1/2) C12L1 (b2) C12L2 (a1/2) C12L3 (a2) C12L4 (b0/2) C1PreS C2PreS C1PstS C2PstS C3PstS TWPstS C1MX1 C1MX2 C2MX1 C2MX2 C3MX1 C3MX2 ... Channel 1 - biquad 4 Coefficient ... C1H44 C2H10
STA323W
Index (decimal) ... 19 20
Default ... 0x400000 0x000000 0x000000 ... 0x400000 0x000000 0x000000 0x000000 0x000000 0x400000 0x000000 0x000000 0x000000 0x000000 0x400000 0x7FFFFF 0x7FFFFF 0x7FFFFF 0x7FFFFF 0x7FFFFFh 0x5A9DF7 0x7FFFFF 0x000000 0x000000 0x7FFFFF 0x400000 0x400000
66/71
STA323W
User-programmable settings
8.11
Variable max power correction (address 0x27-0x28)
The MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is used in place of the default coefficient when MPCV = 1.
D7 MPCC15 0 MPCC7 1 D6 MPCC14 0 MPCC6 1 D5 MPCC13 1 MPCC5 0 D4 MPCC12 0 MPCC4 0 D3 MPCC11 1 MPCC3 0 D2 MPCC10 1 MPCC2 0 D1 MPCC9 0 MPCC1 0 D0 MPCC8 1 MPCC0 0
8.12
Fault detect recovery (address 0x2B - 0x2C)
FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is active, the TRISTATE output immediately goes low and is held low for the time period specified by this constant. A constant value of 0x0001 in this register is ~.083 ms. The default value of 0x000C specifies ~.1 mSec.
D7 FRDC15 0 D6 FDRC14 0 D5 FDRC13 0 D4 FDRC12 0 D3 FDRC11 0 D2 FDRC10 0 D1 FDRC9 0 D0 FDRC8 0
D7 FDRC7 0
D6 FDRC6 0
D5 FDRC5 0
D4 FDRC4 0
D3 FDRC3 1
D2 FDRC2 1
D1 FDRC1 0
D0 FDRC0 0
8.13
Status indicator register (address 0x2D)
D7 PLULL 0 D6 D5 D4 D3 D2 D1 FAULT 1 D0 TWARN 1
STATUS register bits serve the purpose of communicating the detected error or warning condition to the user. This is a read-only register and writing to this register would not be of any consequence.
67/71
User-programmable settings
STA323W
8.13.1
Thermal warning indicator
Table 70.
Bit 0 R
Thermal warning indicator
R/W 1 RST Name RWRAN Description 0: thermal warning detected 1: normal operation (no thermal warning)
If the power stage thermal operating conditions are exceeded, the thermal warning indicator transmits a signal to the digital logic block to initiate a corrective procedure. This register bit is set to '0' to indicate a thermal warning and it reverts back to its default state as soon as the cause of the thermal warning has been corrected.
8.13.2
Fault detect indicator
Table 71.
Bit 1 R
Fault detect indicator
R/W 1 RST Name FAULT Description 0: fault issued from the power stage 1: normal operation (no fault)
As soon as the power stage issues a Fault error signal, thereby initiating the Fault recovery procedure described in Section 8.12, this register bit is set to '0' to indicate the error to the user. As soon as the fault condition (over-current or thermal) is corrected, this bit is reset back to its default state.
8.13.3
PLL unlock indicator
Table 72.
Bit
PLL unlock indicator
R/W RST Name Description 0: normal operation (PLL is in a locked state) 1: PLL unlock is detected (due to probable clock loss)
7
R
0
PLLUL
Under normal conditions (with the correct clock) the PLL is locked into an internal clocking frequency. However, if the clock is insufficient or if it is abruptly lost, the PLL lock state is lost and this information is relayed to the user via setting the PLLUL bit of the Status register to '1'. As soon as the PLL reverts back to a locked state, this bit is set to '0'.
68/71
STA323W
User-programmable settings Figure 53. PowerSO-36 slug down mechanical data and package dimensions
DIM. A a1 a2 a3 b c D D1 E E1 E2 E3 e e3 G H h L N s 0.8 0 15.50 5.80 0.65 11.05 0.10 15.90 0.6102 1.10 1.10 0.0315 10 (max) 8 (max) 0 0.22 0.23 15.80 9.40 13.90 10.90 0.10 mm MIN. TYP. MAX. 3.60 0.30 3.30 0.10 0.38 0.32 9.80 14.5 2.90 6.20 0.2283 0.0256 0.4350 0.0039 0.6260 0.0433 0.0433 0.0087 0.0091 0.3701 0.5472 0.0039 MIN. inch TYP. MAX. 0.1417 0.0118 0.1299 0.0039 0.0150 0.0126 0.6299 0.3858 0.5709 0.4370 0.1142 0.2441
OUTLINE AND MECHANICAL DATA
16.00 0.6220
11.10 0.4291
PowerSO-36
Note: "D and E1" do not include mold flash or protusions. - Mold flash or protusions shall not exceed 0.15mm (0.006") - Critical dimensions are "a3", "E" and "G".
0096119 C
In order to meet environmental requirements, ST offers these devices in ECOPACK(R) packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
69/71
Revision history
STA323W
9
Revision history
Table 73.
Date 15-Nov-2006 08-Jun-2006 02-Feb-2006 02-Jan-2006 01-Jul-2005
Document revision history
Revision 5.0 4.0 3.0 2.0 1.0 Changes Update into latest template. Added new chapters. Updated 4: Electrical characteristics curves. Modified the minimum value of Vcc paramter. Modified the ordering part numbers. Modified page 12/41: Configuration Register A (Address 00h) Initial release
70/71
STA323W
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
71/71


▲Up To Search▲   

 
Price & Availability of STA323W13TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X